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1 Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University,
POB 124, SE-22100, Sweden
2 Theoretical Chemistry, Center for Chemistry and Chemical Engineering, Lund University,
POB 124, SE-22100, Sweden

E-mail: Luis.Pegado@fkem1.lu.se

Received 21 July 2008, in final form 2 October 2008
Published 12 November 2008
Online at stacks.iop.org/JPhysCM/20/494235

Abstract
We have recently reported Monte Carlo simulations for a system of two infinite like-charged
plates in a dipolar fluid solvent (Pegado et al 2008 J. Chem. Phys. at press). The pressure as a
function of plate separation qualitatively reproduces the ion–ion correlation attraction picture
seen in primitive model studies, where the solvent only enters the picture implicitly through its
dielectric constant εr , scaling all charge–charge interactions. Here we analyse in detail the
different components of the pressure between the two plates. This shows that, by changing any
of the relevant parameters (counterion valency, surface charge density or dielectric screening),
the appearance or increase of a pressure minimum is connected to the same components in both
the primitive model and the dipolar solvent model. Decomposing the pressure is helpful in
distinguishing between solvent depletion or packing effects and the coexisting correlation
attraction. Although the pressure can be evaluated at any plane parallel to the surfaces, the
analysis of the pressure at the midplane provides the best physical insight.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ion–ion correlation attraction has been known at least since
the early 1980s, when a great deal of theoretical work was
done in the context of the primitive model (PM) of electrolyte
solutions (e.g. [1, 2]). It is nowadays a well-established
phenomenon and an important extension of the DLVO [3]
theory of colloid stability. An introduction to the subject can
be found in [4], where both theoretical work and experimental
manifestations are covered. The systematic theoretical analysis
of such a phenomenon in a molecular solvent still has a
long way to go, however. The statement applies also to the
interaction between net charged objects in general. Studies of
net charged objects in molecular solvents have had a tendency
to concentrate on structural properties, with less emphasis on
the force problem. The forces between net charged objects in
solution are the governing properties of a particular system,
dictating conditions of stability with profound implications,
e.g. in colloid science [5]. Structure in such systems is, in

fact, nothing but a property derived from the relevant forces.
The fundamental importance of this problem of course goes
hand in hand with its difficulty. Some attempts have been
made [6–12], but the global picture which emerges is far from
being clear. Besides the fact that the results are relatively
scattered throughout the literature, they tend to be highly
model-dependent. It is a safe statement to say that the thorough
study of such problems still needs considerable attention.

In a previous publication [13] we have compared the
net osmotic pressure between two infinite like-charged plates
with neutralizing counterions only in the primitive model and
in a molecular medium sharing a common PM description.
The solvent was described using the Stockmayer fluid model,
based on an ideal dipole plus a Lennard-Jones potential. This
description was kept intentionally simple. The purpose was to
depart from the primitive model in a controlled fashion, and to
include molecular detail in the solvent in such a way that it was
possible to assess whether or not ion–ion correlation attraction
is present. A second pressing question was to assess how well
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the dielectric screening from a dipolar fluid, strictly dependent
on the strength of its dipole moment μ and on its bulk chemical
potential, conformed to the bulk dielectric screening constant
εr used in the PM throughout the whole range of plate–plate
separations.

The results showed that the molecularity of the solvent
as expected enters the picture, and the pressure curves are
markedly non-monotonic. This masks, but does not erase, the
correlation attraction, which is still present. The manifestation
is as usual in the form of a short range attractive pressure
minimum, occurring for sufficiently high counterion valency,
surface charge density and low enough dielectric screening.
This minimum is lost or reduced upon decreasing the
electrostatic coupling through any of these three parameters.
The analysis of interaction free energies, rather than pressures,
unequivocally established the similarity between the models.

In order to further substantiate our point, some general
conclusions were given regarding the analysis of pressure
components in the PM and in the corresponding Stockmayer
fluid description. The relevant data was neither presented nor
explored in detail, and the purpose was merely to state that
the same components responsible for the correlation attraction
in the PM kept their role in the molecular solvent. We
nevertheless believe that there is a great deal more to learn
about this system by carefully analysing the different pressure
components. The possibilities of such a procedure include
the separation between correlation and other effects and the
connection between the interactions in the system and the
different pressure components. Similar net effects are also seen
to have a quite distinct physical origin, which also emerges as
a result of the analysis. This is so for the case of changing the
dielectric screening. In the PM the resulting effect comes about
through the direct scaling of all charge–charge interactions
by εr . For a molecular solvent, the separations at which the
correlation phenomenon takes place are clearly very far away
from those under which the concept of a dielectric constant is
derived and applicable, and an extra mechanism is needed to
justify a common behaviour with the PM.

A fair share of studies which include pressure decomposi-
tion analyses of the ion–ion correlation attraction, in the PM,
has previously been done (e.g. [14–19]). These have had the
merit of emphasizing that the effect always depends on a bal-
ance between entropic and energetic contributions, which is of-
ten overlooked. In fact, when doubling the counterion valency
at high surface charge density σ and low εr , the terms which
depend on the number of counterions in the system (ideal en-
tropy at the midplane and collision repulsion) change much
more drastically (at short range) than the electrostatic attrac-
tion [8, 17]. Even if the data is scattered through different
sources, and no single systematic study has been done of the
behaviour of different components of the pressure upon chang-
ing all the relevant parameters (counterion valency q , σ and
εr ), the general picture should be well known by now. It ob-
viously lacks, however, a thorough comparative study between
the PM and molecular solvent pictures.

One should finally mention Otto and Patey’s work on the
interaction between like-charge plates [8, 9]. These authors
have worked in the context of the anisotropic hypernetted-
chain approximation and introduced solvent effects through

solvent averaged ion–ion potentials of mean force (PMF). They
make a detailed analysis of pressure components, and the final
result is that the differences between the PM and their implicit
molecular solvent are dominated by an effective pressure term.
This is defined as the difference between the total PMF and the
screened Coulomb part present in the PM. The results are also
shown to be highly model-dependent [9].

2. Model and simulation details

An extensive description of the model, simulations and data
evaluation is given in [13]. In particular, we have presented a
quite detailed discussion of our strategy and the reasons for
the particular choice of solvent and interaction parameters.
Nevertheless, we present a brief account of the main details
here, which is intended to render the present publication more
self-contained.

We have performed Monte Carlo simulations for two like-
charged infinite planes of smeared-out surface charge density
σ with counterions and solvent in between. For our choice of
molecular solvent the pair potentials of the system comprise
ion–ion interactions:

Uii = 1

4 π ε0

Ni−1∑

l=1

Ni∑

k=l+1

ql qk

rlk
(1)

ion–dipole interactions:

Uiμ = 1

4 π ε0

Ni∑

l=1

Nd∑

k=1

ql
µk · rlk

r 3
lk

(2)

and dipole–dipole interactions:

Uμμ = 1

4 π ε0

Nd−1∑

l=1

Nd∑

k=l+1

µl ·µk

r 3
lk

− 3 (µl · rlk)(µk · rlk)

r 5
lk

(3)

where Ni and Nd are the numbers of ions and dipoles in the slit,
respectively, and rlk = |rlk | = |rl − rk |. In the PM the solvent
enters the picture only through its dielectric constant εr , scaling
all charge–charge interactions. All particles further interact
with each other through a Lennard-Jones 12-6 potential:

ULJ = 4 ε

[(
ς

rlk

)12

−
(

ς

rlk

)6
]

(4)

with ε = 0.1 kBT and ς = 4.0 Å, and with the walls via a
Lennard-Jones 9-3 potential:

ULJ wall = A

z9
− B

z3
(5)

where z is the perpendicular distance between a particle and
a wall. A and B are obtained by integration over a wall
composed of the same kind of LJ particles as the ones in
solution, at cubic close packing [20]. One gets A = 2.56 ×
107 J mol−1 Å

9
and B = 4.69 × 104 J mol−1 Å

3
.

The PM simulations are run in the canonical ensemble,
but in the MS solvent particles are allowed to enter and
leave the slit through grand canonical insertion and deletion
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moves [21]. The particle translational moves are accepted or
rejected according to the standard Metropolis algorithm [22].
In the case of the dipoles this translation is coupled to a
rotation about one of the molecule-fixed axes. Periodic
boundary conditions are applied in the x, y directions, parallel
to the walls. For the truncation in the calculation of the
direct particle–particle interactions we use the minimum-image
convention [21]. Long range corrections are dealt with using
the charged-and polarized-sheets method [13, 16, 23]. In this
method the particles in the box interact with the mean charge
and dipole distributions outside the simulation box.

The net osmotic pressure between the plates is given by
the difference between the pressure of the confined solution
and that of the bulk [24]:

Posm = Pconf
osm − Pbulk

osm . (6)

The pressure in our slit systems was calculated both at the
walls and at the midplane. In the first case one makes use of
a modified version of the contact value theorem for ion–dipole
mixtures [13, 25], which is

Pconf,W
osm = LJiW + LJμW − σ 2

2 ε0
(7)

where LJiW and LJμW are the pressures corresponding to the
sum of all the ion–wall and dipole–wall Lennard-Jones forces,
respectively, FLJiW, μW = −∂ ULJ wall/∂ z and the last term
on the rhs is the electrostatic Maxwell term. This is also
scaled by εr in the case of PM simulations. When evaluated
at the midplane the pressure consists of a larger number of
components:

Pconf,MP
osm = IDEALi + IDEALμ + LJii + LJiμ

+ LJμμ + ELii + ELiμ + ELμμ + ELiiout+W

+ ELiμout + ELμiout + ELμμout + LJiW + LJμW. (8)

The first two terms are the ideal entropic pressures of the
corresponding species, i.e. IDEALi = kBT [i]mid, with [i]mid

representing the concentration of ions at the midplane, and
similarly for the dipoles. LJii is the sum of the direct Lennard-
Jones forces (divided by the area) between ions in opposite
half-spaces, and similarly for the LJiμ and LJμμ terms. The
ELii, ELiμ and ELμμ correspond to the direct electrostatic
forces for the same pairs of particles. ELiiout+W is the sum of
the forces (divided by the area) of ions in each half-space with
the wall and external ion distribution in the other half-space.
The reason for lumping these two terms together is connected
to the details of the charged-sheets method and will not be
elaborated on here (for details see [13, 16]). ELiμout is the
force between the ions in each half of the box and the external
dipole distribution in the other half, and a similar notation is
used for dipoles inside and ions outside and dipoles inside and
dipoles outside. The LJiW and LJμW are similar in nature to
the ones in equation (7), except that here one considers only
the forces between particles in each half-space and the wall in
the opposite half-space. The explicit formulae for all pressure
terms are given in [13].

In order to analyse the pressure at the midplane, it is
convenient to group contributions into different terms. This

can, of course, be accomplished in many ways. Here we have
chosen to analyse the following combinations:

P ID = IDEALi + IDEALμ (9)

PLJ
pp = LJii + LJiμ + L Jμμ (10)

PEL = ELii + ELiμ + ELμμ + ELiiout+W + ELiμout

+ ELμiout + ELμμout. (11)

The LJiW and LJμW in the case of the pressure evaluated at the
midplane do not contribute significantly to the analysis, as will
be exemplified below, and have therefore been left out.

An important aspect in the interpretation of the results is
to consider not only the absolute value of a certain pressure
term at a given separation, but especially its net value. This
is defined as the difference between the absolute value at that
separation and the corresponding bulk value. In the case of
terms for which it does not make sense to talk in terms of
bulk values we use the infinite separation value. Examples are
the Maxwell and LJiW terms, in the case of the pressure at the
walls. At infinite separation, in the PM, these will have exactly
the same absolute value, but opposite sign. The values have
to cancel, since at infinite separation one should attain bulk
pressure, but strictly speaking they have a non-zero absolute
value for a simulation of ions between charged plates. In the
MS, LJμW does not converge to a bulk value (i.e. the value for a
simulation of dipoles only between two uncharged plates), but
to a specific value for a simulation of ions and dipoles between
charged surfaces. The sum of the three relevant pressure terms
will, of course, go towards the bulk pressure, but this is not
valid for the separate parts. In this case we will also define the
net value of LJμW with respect to infinite separation, not with
respect to the bulk value for a dipole-only simulation.

All simulation results presented are for a box size of
44.721 Å at 298 K. We report data for two counterion valencies
(q = 0.1 e and q = 0.2 e, referred to as monovalent and
divalent) and two surface charge densities (σ = −0.001 e Å

−2

and σ = −0.002 e Å
−2

, low and high surface charge density,
respectively). For the primitive model results we take εr = 1.1
as our low screening and εr = 7.0 as the high one. We
want all our simulations to share a similar primitive model
description, which means that we have to be able to calculate
the εr corresponding to a certain μ and dipolar number density
n. We have used the Debye equation [26], which is sufficiently
accurate for the chosen parameter regime. For a given μ,
n is tuned to give the desired εr , via adjusting the external
chemical potential, for a simulation of solvent only between
uncharged walls, at large wall–wall separation. In our low
density simulations we use n = 0.006/0.008 particles Å

−3

at low (0.4 D) and high (1.6 D) μ, respectively. The Debye
equation gives εr = 1.1 for low μ and εr = 7.7 for high μ. In
the high density cases n = 0.011 particles Å

−3
and μ = 0.4

D or μ = 1.3 D, corresponding to εr = 1.2 or εr = 6.6,
respectively. The interaction parameters chosen are such that
the maximum charge–charge interaction is of the same order of
magnitude as for q = 1 e and q = 2 e in εr ∼ 78 ‘water’. The
maximum ion–dipole interaction energy is of the order of kBT .
These represent, of course, a big technical simplification in the
simulations. Furthermore, our main interest at this stage is to
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Figure 1. Net osmotic pressure and different pressure components as
a function of plate–plate separation as calculated at the midplane. All
curves in red (grey in the printed version) correspond to q = 0.1 e,
σ = −0.002 e Å

−2
and εr = 1.1. In black one has the results for

q = 0.2 e, all other parameters being equal. Thick solid lines are the
net osmotic pressure, thin solid lines the PEL terms. For P ID one
uses dashed lines and for PLJ

pp the lines with symbols. The inset
corresponds to an upscaled plotting of one particular section of the
original graph. Primitive model results.

keep the description as simple as possible, so as to facilitate the
interpretation of similarities and differences resulting from the
change in the level of description when going from PM to MS.
The bulk pressures in the MS were calculated in simulations
for solvent only between uncharged plates at 45 Å separation.

3. Results

3.1. Counterion valency effects

Figure 1 shows the net osmotic pressure between the two
charged plates and the pressure components as defined in
equations (9)–(11) for two different counterion valencies,
in the primitive model. The first observation is that
one reproduces the known ion–ion correlation attraction,
namely at sufficiently high surface charge density and low
enough dielectric screening, the net pressure curve has a
minimum at short range, for divalent counterions, which
is lost when halving the counterion valency. From the
different pressure components, one realizes that the difference
between monovalent and divalent curves, at the position of the
correlation minimum, is not an electrostatic effect, but rather
the result of the P ID and PLJ

pp terms. If one looks at the
values at 8 Å separation, the red PEL curve has been slightly
shifted up as a result of an increased ELii term (6.4 M versus
8.9 M for q = 0.2 e versus q = 0.1 e, respectively). At the
same separation, the two remaining components differ by about
10 M each (10.8 M for q = 0.2 e versus 20.3 M for q = 0.1 e
for P ID and 0.4 M versus 10.7 M for divalent and monovalent,
respectively, in the case of PLJ

pp ). The divalent curve would not
be net attractive without the negative electrostatic component.
However, here we are focusing on the differences between
pairs of curves, and in this respect the electrostatic attraction
is nearly unchanged and an extra repulsion comes about in

shifting the q = 0.1 e curve up. The behaviour is mainly
connected to the difference in the number of counterions in the
system.

It is also interesting to elaborate on the different sub-
contributions to the PEL term. At large separations this will
tend to zero. The ELii term will become smaller and smaller,
since the counterions will have a tendency to be ‘condensed’ on
both walls as the distance to the opposite half-space is growing.
On the other hand, the ELiiout+W will also tend to zero. At
large distances an ion on one side of the midplane will just
see a smeared-out charge distribution with total charge equal
to that on the wall, but of opposite sign. Since the field outside
an infinite plane of smeared-out σ is independent of distance,
these two forces cancel. The ELiW term is, in fact, a constant
throughout the whole separation, equal to the Maxwell term.
Let us now focus on the net pressure components. From
this point of view, the ELiW term has no contribution to the
pressure. As one shortens the separation between the plates,
the net attractive character of the PEL term can be interpreted
as follows. In the mean field the ions in one half-space see a
smeared-out ion distribution in the other half. In the primitive
model, in the particular case of the charged-sheets method,
one has the sum of an external smeared-out charge distribution
and the direct charge–charge interactions in the simulation
box. Due to ion correlations, the repulsion between charges
on opposite half-spaces is reduced as compared to the mean-
field (valid at infinite separation) behaviour. This then gives
rise to a net electrostatic attraction. Similar statements have
been made by Valleau et al [16]. The take-home message is
that the net behaviour should not be interpreted in terms of an
ion–wall attraction, but rather as a result of the deviations of
the ion distribution in the PM (explicit, mobile counterions)
when compared to the mean field. Obviously, the ion–wall
term is the only attractive charge–charge interaction, but it
is the deviation of the ion–ion repulsions from the mean-
field/infinite separation value that allow this constant attraction
to dominate over the repulsion between the mobile charges.
At short separations, the PEL term converges to the Maxwell
term (−21.3 M), as it should. If there would be only space
for a monolayer of ions between the two charged walls, all
with the same z coordinate, then the z component of the
direct electrostatic ion–ion interaction in the box and of the
interaction of ions inside the box with ions outside would
be zero. The ELii term is then zero both at very large and
very small separations, having non-zero (positive) values in
intermediate regimes. ELiiout = σ 2/2ε0 at infinite separation
and 0 at zero separation. In the two cases being analysed here,
at 20 Å, ELii ∼ 12.5 M for divalent and ELii ∼ 13.5 M for
monovalent, ELiiout+W being of similar magnitude, but with
opposite sign. In other words, even if the terms just go to zero
at infinity, at relatively short separations one is already in a
regime where their effects nearly cancel.

We now move to the analysis of the corresponding
molecular solvent curves, displayed in figure 2. Panels (a)
and (b) compare the midplane situation for two different
solvent densities. The pressure curves are oscillatory, as
a result of packing effects. We have reported before [13],
however, that the oscillations are more pronounced than for

4



J. Phys.: Condens. Matter 20 (2008) 494235 L Pegado et al

Figure 2. Net osmotic pressure and pressure components at the midplane (upper panels) and at the walls (lower panels) for low (left panels)
and high (right panels) solvent density. As in figure 1, red (grey in the printed version) is used for monovalent and black for divalent
counterions, and σ is also −0.002e Å

−2
. At low density εr = 1.1 and at high density εr = 1.2, as calculated through the Debye equation. For

the upper panels the same line styles as in figure 1 are used, i.e. thick solid lines are the net osmotic pressure, thin solid lines the PEL terms,
for P ID one uses dashed lines and for PLJ

pp the lines with symbols. For the lower panels the thin solid lines correspond to the LJiW terms and
the dashed ones to the LJμW terms. The bulk pressure subtracted to obtain the net osmotic pressure was 15.2 M for low density and 51.8 M for
high density.

a solvent-only system, i.e. they result from the interplay
between ion and solvent packing. In any case, the qualitative
ion–ion correlation attraction picture is clearly discernible.
At both densities, the net pressure curves are shifted up at
the position of the innermost minimum when going from
divalent to monovalent counterions. Again, the electrostatic
contribution to the effect is not dominant and the major
difference comes from the PLJ

pp terms (19.1 M and 25.9 M
for divalent and monovalent, respectively, in the high density
molecular solvent, at 7.5 Å). This is similar to the behaviour
previously observed in the PM. One should also add that, like
in the PM, the difference in PLJ

pp is given by the LJii term. At
7.5 Å one has LJii = 13.1 M for monovalent and 0.8 M for
divalent. At 9 Å one has 18.8 M for q = 0.1 e and 1.2 M
for q = 0.2 e. The ion–ion term is dominant in these two
extremes for different reasons, though. At 7.5 Å both the LJiμ

and LJμμ differ little between monovalent and divalent. The
former amounts to 12.8 M for q = 0.2 e and to 11.6 M for
q = 0.1 e, whereas the latter is 5.5 M for divalent and 1.1 M
for monovalent. At 9 Å, however, the terms differ a lot more,
but these effects act in opposite directions. LJiμ = 34.7 M for
q = 0.2 e and 44.0 M for q = 0.1 e and LJμμ = 28.1 M for
q = 0.2 e and 12.5 M for q = 0.1 e. The P ID terms, however,

tend to be less and less different the more the density goes up,
since the space left free by the ions on doubling the valency is
being filled by dipoles.

Having analysed what is different between curves for
different counterion valencies, it is now important to identify
what is common, as one increases the density. In going from
the primitive model to the high density molecular solvent,
the PLJ

pp terms at 7.5 Å have gone from net repulsive to net
attractive. This is connected to the increase in the bulk value
(reflecting LJμμ), since the absolute value at the position of
the minimum has also increased. In going from the PM to
the high density MS, the depth of the q = 0.2 e minimum
in the net pressure curves has increased and the q = 0.1 e
curve has been shifted down and turned into net attractive, at
the same separation. We can now see that this is connected
to solvent depletion. In the high density molecular solvent,
the pressure zero at around 10 Å corresponds roughly to the
situation where two molecules can be side by side (in the
z direction) in the slit, without excluded volume repulsion.
Compressing them even further leads to an increase in pressure,
until a maximum is reached. Between the maximum and
the minimum the amount of solvent corresponding roughly to
a layer of molecules abandons the slit, leaving one layer of

5
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molecules only between the walls, which gives rise to a large
reduction in their number and in PLJ

pp . For a situation of one
molecular layer only between the walls PLJ

pp is greatly reduced,
since particles are, on average, more ‘under’ each other than
facing each other and, thereby, the z component of the LJ
forces is smaller and smaller. It would be zero in the extreme,
were all the particles at the same z coordinate. The appearance
or increase of the large repulsive maximum at around 9 Å is in
this way also connected to PLJ

pp , namely to its increase above
the bulk value as the density increases. We stress that these
effects operate in roughly the same way for both ion valencies.
This whole analysis is then useful in separating solvent packing
or depletion effects from the coexisting ion–ion correlation
attraction.

Grand canonical Monte Carlo simulations of dense
Lennard-Jones fluids between neutral walls were performed
long ago by Snook and van Megen [27–29]. Their studies
focused on the solvation forces associated with the removal
of successive layers of fluid, characterized by an oscillatory
pattern, with minima and maxima. The non-specific packing
and depletion effects just described are connected to this
picture, albeit operating in a more complex system.

As mentioned, the LJiW and LJμW components of the
pressure at the midplane have been excluded from the analysis.
Their sum constitutes an attractive term, which only becomes
repulsive at the shortest separations of all (6 Å), where the
behaviour is anyway dominated by the ideal entropic pressure.
In the primitive model, LJiW + LJμW = −3.3 M for q =
0.2 e and −6.4 M for q = 0.1 e, at 8 Å separation. As we
increase the particle number density, the difference between
monovalent and divalent cases is smaller and smaller, and for
our high density molecular solvent LJiW + LJμW = −9.0 M
for q = 0.2 e and −9.8 M for q = 0.1 e, at 7.5 Å. The
contribution for the difference between different valency cases
is then always small and tends to disappear with density in
the molecular solvent. The increase in the absolute value of
the term in going from PM to MS is much smaller than other
effects being analysed, namely solvent depletion. We do not
believe there is that much to learn from these terms, hence their
exclusion from our analysis.

Panels (c) and (d) in figure 2 present the net osmotic
pressure as calculated at the walls and the corresponding
pressure components. The Maxwell terms are not displayed
since they are just a constant function equal to −23.4 M. The
curves for the PM were not presented before since in this
case the total curves correspond to the LJiW term, and can
then be analysed as such. They are of course shifted down
by the Maxwell term (−21.3 M), which must be equal to the
infinite separation value of LJiW, in order to reach the proper
bulk pressure (zero in this model). In the PM one clearly
sees that at the walls the difference between monovalent and
divalent is due to LJiW at the position of the minimum: it is net
attractive for q = 0.2 e and net repulsive for q = 0.1 e. The
shape of the Lennard-Jones potential, and the fact that we are
always, on average, on the repulsive branch (absolute values
of the LJiW pressure always bigger than zero), necessarily
means that a net attractive particle–wall term corresponds,
at that position, to a closer proximity of the particles to the

midplane (as compared to neighbouring positions). This is
yet another clear view on the ion–ion correlation effect. For
monovalent the picture conforms more to that of two double
layers being squeezed more and more against the walls. For
divalent, the possibility of correlations in the positions of the
ions leads to a situation where the total energy of the system
is actually reduced by reducing the average separation of the
charges in the z direction. In the MS, despite the superimposed
oscillations, the net character of the LJiW terms, at the position
of the minima, is maintained. As the density increases, the
LJμW terms become more net attractive at the position of the
minima, but in a similar way for both monovalent and divalent
counterions. The difference between the value at 7.5 Å and
that at 20.0 is −15.6 M for q = 0.2 e and −13.3 M for q =
0.1 e. This is the non-specific solvent depletion effect already
mentioned before. One can see that the ion–wall profiles for
the monovalent cases at around 7.5 Å also develop a local
minimum at high density. Again, this means a relatively closer
proximity to the midplane and is connected to the ions being
able to occupy the space left by the dipoles. One can also note
that the infinite separation values of LJiW are increasing with
increasing density. The same is valid in general throughout
the whole separation regime. Again, taking into account the
nature of the potentials involved, this means that the solvent
spheres are effectively pushing the ions closer to the walls. We
also see that the effect is felt more at higher counterion density
(q = 0.1 e case).

Comparing the interpretation of the net osmotic pressure
curves in terms of the components at the walls and at the
midplane, it is clear that the latter analysis proves much more
physically insightful. Even if the former gives a fingerprint of a
correlated situation in terms of a net attractive LJiW component,
as opposed to a net repulsive one for a non-correlated case,
the link with the specific interactions in the system is at least
diffuse. This was, of course, to be expected, taking into
account the large reduction in the total number of pressure
components in going from one analysis to the other. Whereas
the components of the pressure at the walls just reflect the
average positions of the particles, the ones at the midplane are
directly derived from the different pairs of interactions in the
system. In particular, the pressure at the walls interpretation
is not able to discriminate whether the analysed counterion
valency effects have an energetic/electrostatic origin or if they
are more dependent on the different number of counterions in
a monovalent as compared to a divalent system.

3.2. Screening effects

Figure 3 presents PM and high density molecular solvent
results for the net osmotic pressure, at q = 0.2 e, σ =
−0.002 e Å

−2
and two different values of εr (PM) or μ (MS).

The results for low screening are the ones already given in the
previous section, and are repeated here to make the comparison
easier. In the PM, at the midplane, the loss of the ion–ion
correlation attraction is seen to be exclusively an electrostatic
effect. Neither the P ID nor the PLJ

pp terms differ significantly
between εr = 1.1 and 7.0. Upon reduction of the electrostatic
attraction, the ideal entropic factor takes over and the net curve
is shifted up. The interpretation of this reduction, in the PM, is
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Figure 3. Posm and pressure components for high surface charge density and divalent counterions, at two different values of εr . Black
corresponds to low screening and red (grey in the printed version) to high screening. Left panels correspond to PM results at εr = 1.1 and 7.0.
In the right panels we present the results for the high density molecular solvent, for which the Debye equation gives values of the bulk εr of
1.2 and 6.6. Upper panels correspond to the pressure at the midplane. For these the thick solid lines represent the net osmotic pressure, the
thin solid lines the PEL terms, the dashed lines P ID and the lines with symbols PLJ

pp . For the lower panels (pressure at the walls) thin solid lines
represent the LJiW terms and the dashed ones LJμW. In panel (c) the dashed lines with symbols are the different Maxwell terms. The bulk
pressure subtracted to obtain the net osmotic pressure was 46.6 M for the high screening case. As before, the inset in panel (a) is just an
upscaled version of a particular section of the original plot.

obvious: all the electrostatics have been scaled down by εr . In
the MS, the screening effect, this time related to an explicit
change in the dipole moment of the solvent molecules, and
not to a direct scaling of the charge–charge interactions by
a constant, is still governed by the electrostatics. However,
the PEL curves, at 7.5 Å, are nearly coincident in absolute
value. In fact, the charge–charge terms differ by less than
0.2 M. This is perfectly understandable, since the number of
solvent molecules at this separation is very far away from
the conditions under which the concept of a bulk dielectric
constant is derived. One has, on average, not much more
than 1 dipole per ion. Despite this, the bulk values of the
electrostatic components are very different in the two cases,
and this renders the net effect very similar to that in the PM.
The bulk electrostatics stem from ELμμ, which amounts to
0.1 M at 20 Å for μ = 0.4 D and to −9.4 M for μ = 1.3 D.
The dipolar cohesivity is making all the difference. This
explains the agreement between the PM and the MS picture
in a situation where the amount of solvent in the slit is unable
to screen charge–charge interactions in the way εr conveys.
A similar net effect has a different physical origin in the two
models.

The pressure decomposition at the midplane further
shows the importance of ion–dipole interactions. At 7.5 Å,
for example, the charge–charge terms are nearly identical.
Nevertheless, the PEL curve for μ = 1.3 D is clearly above
the one for μ = 0.4 D in absolute value. The extra repulsion
is mostly coming from a ELiμ amounting to 2.8 M, and which
is equal to 0.3 M for the lower dipole moment. We note that
this contribution, even if not being dominant in the difference
between the two PEL curves in the simulations carried out in
this work, is expected to be more and more important for higher
charges (higher ion–dipole force). At 9 Å the relative position
of the two electrostatic component curves is reversed. At this
point, the dominant contribution for this is not yet the ELμμ

term (−0.1 M for μ = 0.4 D versus −5.4 M for μ = 1.3 D),
but rather ELiμ (−0.7 M for μ = 0.4 D versus −6.5 M for
μ = 1.3 D). The inversion in the sign of the ELiμ term with
separation is connected to the nature of the ion–dipole force,
which shares a common ‘magic angle’ effect with the dipole–
dipole interaction energy (in both cases one has the interaction
with a field from a dipole). In other words, the Fz component of
the ion–dipole force is attractive for θ < 54.4◦ and repulsive
for θ > 54.4◦, θ being the angle between the dipole vector

7



J. Phys.: Condens. Matter 20 (2008) 494235 L Pegado et al

and the position vector of the dipole with respect to the ion.
We remind that ELiμ reflects the force between ions in one
half-space and dipoles in the other, and add that we have
confirmed polarization profiles to ensure our ‘magic angle’
interpretation holds. The increase in ion–dipole interactions,
and in other particle–particle interactions, can also be followed
in the PLJ

pp terms. As can be seen in figure 3, panel (b), the total
Lennard-Jones curve for higher dipole moment is always above
the one for the lower one. For relatively short separations,
this is predominantly an effect of the LJiμ term. At 7.5 Å
LJiμ = 12.8 M for μ = 0.4 D and 16.8 M for μ = 1.3 D,
while LJμμ = 5.5 M and 7.0 M for low and high dipole
moment, respectively. At 9 Å LJiμ = 34.7 M for μ = 0.4 D
and 44.8 M for μ = 1.3 D; LJμμ = 28.1 M for low μ and
30.6 M for high μ. The ion–ion Lennard-Jones terms differ by
around 0.2 M. This can be interpreted as the result of a slightly
increased number of dipoles at higher interaction strength.
More particles will enter the slit for stronger interactions.
Another interpretation is that ions and dipoles will be closer to
each other, thereby increasing the Lennard-Jones repulsion. A
combination of both factors is, of course, possible and likely.
We note that, for example, at 9 Å the increase in μ brought
about an increase in the LJμμ term of around 2.5 M, while
for LJiμ the difference is slightly higher than 10 M. This
can be taken as an indication of the importance of the last
mechanism for the increase in the ion–dipole Lennard-Jones
term, based on the bigger proximity of the particles, due to the
stronger electrostatic interaction. One could argue that LJμμ

would give an upper bound to the increased density effect, LJiμ

probing both mechanisms (the proximity one then being more
important). At larger separations the difference in the PLJ

pp
comes from the difference in LJμμ, which can of course also
be traced to stronger interactions. One should anyway add that,
throughout the whole separation regime presented, the average
number of dipoles in the slit, between the two dipole moment
magnitudes, does not vary more than four units. The mean
value of the difference in number of dipoles, for the different
simulation points, is close to 2.

The LJiμout, LJμiout and LJμμout components of the
pressure have not been mentioned so far. Of the systems
under analysis, they are the largest for the q = 0.2 e, high
σ and high εr case for a high density molecular solvent. The
dipole–dipole term is even here completely negligible, being
smaller than 0.1 M at all separations. At 7.5 Å, both LJiμout

and LJμiout amount to 0.4 M, their value being 0.9 M at 9 Å.
These values are ∼10× those for the same system, at low
screening. In any case, they only represent a small repulsion
which is insignificant in the global behaviour, and therefore
their analysis has been skipped.

We now turn to an interpretation in terms of the pressure
at the walls. In the PM (figure 3(c)), the loss of the
correlation attraction is again connected with going from a net
attractive ion–wall term to a net repulsive one. The reduction
of the charge–charge interactions through εr makes it not
advantageous anymore for the counterions to slightly migrate
away from the walls in order to reduce the (electrostatic)
potential energy of the system. Even though the Maxwell terms
are displayed, they have no net contribution to the pressure.

The difference in the ‘bulk’ (infinite separation) values of LJiW

is also a measure of the charge–charge repulsion: ions which
repel each other more strongly are, on average, closer to the
walls (higher LJiW). In the molecular solvent at high density,
the major contribution to the difference between low and high
μ curves is also coming from the ion–wall component. In
this case both curves are net attractive at the position of the
innermost minimum. However, the difference between the
value at 7.5 Å and that at 20 amounts to −10.4 M for μ =
0.4 D and −2.3 M for μ = 1.3 D. The fact that LJiW went
from net repulsive to attractive, at high screening, when going
from the PM to the MS, is justified as follows. Before, we
saw how solvent depletion leaves empty space for the ions
and allows them to move slightly more towards the midplane.
This justified the appearance of the local minimum in the
LJiW profile in figure 2 (d), in the case of q = 0.1 e. This
effect also operates for divalent. In the PM, the difference
between the value at 8 Å and that at 20 Å, for the q = 0.2 e,
high σ and low εr case, is −5.2 M, to be compared to the
above-mentioned −10.4 M for the corresponding case in the
high density MS. However, if anything, solvent depletion is
smaller for higher μ than for the lower one. The difference
between the values at 7.5 Å and those at 20 Å for the LJμW

components is −15.6 M for low μ and −11.9 M for high
μ. This conforms to the intuitive picture that stronger dipoles
are better kept in the slit than weaker ones (stronger ion–
dipole interactions). Despite this fact, one also has to take
into consideration that, in going from the PM to the MS, the
difference in the infinite separation values of LJiW components,
between the two screenings, has been greatly reduced or, in
other words, the value for high screening has increased much
more than the one for low screening. In the low screening case,
one has gone from εr = 1.1 in the PM to εr = 1.0, whereas in
the higher screening case the change has been between 7.0 and
1.0. For the MS cases the εr s mentioned are the ones which go
into Coulomb’s law for charge–charge interactions, and not the
ones calculated through the Debye equation. The point is to
make clear the difference in the effect on the Maxwell terms.
This explains why the curve for μ = 1.3 D is more down-
shifted, at the position of the minimum, when compared to
the PM. However, the source of the difference between low
and high screening cases is still the same in PM and MS.
One should also mention that, in the low density molecular
solvent (results not shown), the net value of the LJiW term at
the position of the minimum, for q = 0.2 e, σ = −0.002 e Å

−2

and high screening (μ = 1.6 D) is still net repulsive, the
solvent depletion effect not being so strong as at higher density.
The difference in the large separation values of LJiW seen in
panel (d) in figure 3 is now due to ion–dipole interactions (and
thereby not so strong as the εr effect in the PM). In other words,
the stronger dipoles pull the ions slightly more away from the
walls into the solvating solution.

As in the previous section, one easily concludes that the
pressure at the walls interpretation has quite some limitations
when compared to the pressure decomposition analysis at the
midplane. Even if at the walls one has a clear insight into
the solvent depletion phenomenon, mostly through its direct
effect on the LJμW component, but also through its indirect
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Figure 4. Pressure at the midplane and components for q = 0.2 e, low screening at σ = −0.002 e Å
−2

(black) and σ = −0.001 e Å
−2

(red,
grey in the printed version). (a) Primitive model; (b) high density molecular solvent. Following the previous notation, thick solid lines stand
for the net osmotic pressure, thin solid lines for the PEL terms, the dashed lines correspond to P ID and the lines with symbols to PLJ

pp . The
inset in panel (a) is an upscaling of a section of the plot.

Figure 5. Pressure at the midplane and components for q = 0.1 e, low screening at σ = −0.002 e Å
−2

(black) and σ = −0.001 e Å
−2

(red,
grey in the printed version). (a) Primitive model; (b) high density molecular solvent. Thick solid lines represent the net osmotic pressure, thin
solid lines the PEL terms, the dashed lines are for P ID and the lines with symbols for PLJ

pp . The inset in panel (a) is an upscaling of a section of
the plot.

one on LJiW, the interpretation of the correlation attraction
does not go beyond the already mentioned fingerprint kind
of identification. In the MS, for high screening the ion–
wall component is only weakly net attractive, while for low
screening the net minimum is of the order of five times deeper.
It is not at all straightforward to make the link with the
already mentioned electrostatic mechanism, where the loss of
the correlation effect relies on a lowering of the bulk value of
the electrostatic component at high μ. The lowering of the
infinite separation value of the LJiW component upon increased
screening is, of course, connected to this, but it has more the
flavour of a complement to the whole analysis, rather than
of a clear identification of the underlying mechanism for the
correlation attraction in this system. One also completely
misses some subtleties in the behaviour of the system, like
the different sign of the ion–dipole electrostatic forces, as
a function of plate to plate separation, or the influence of
the ion–dipole interactions on the Lennard-Jones interactions.

Furthermore, in the pressure at the walls one loses the clear
distinction between the two mechanisms for the correlation
attraction in the PM as compared to the MS: in the first the
electrostatics at large separation are very similar, and differ
widely at short range. In the latter it is the bulk value which
is majorly changed, the situation at short range being largely
unchanged. At the walls, the big change always happens in the
infinite separation value of LJiW. Even if one knows that there
is a wide difference in the electrostatic Maxwell terms in the
PM, which have to cancel the infinite separation value of LJiW,
and that this difference has disappeared in the MS, this is, of
course, far away from the clear mechanistic interpretation as
afforded by the direct electrostatic midplane curves.

3.3. Surface charge density effects

In the primitive model, for q = 0.2 e and εr = 1.1, the loss of
the correlation attraction in going from σ = −0.002 e Å

−2

9



J. Phys.: Condens. Matter 20 (2008) 494235 L Pegado et al

to σ = −0.001 e Å
−2

is exclusively due to electrostatics.
This is displayed in figure 4, panel (a). In fact, one even
sees that there is an ideal entropic component which partly
counteracts the electrostatic effect, since there is double the
number of counterions per volume at higher surface charge
density. The interpretation of the difference in electrostatic
components is connected to the discussion of the different
contributions to the PEL term in the beginning of the section
on counterion valency effects. The electrostatic attraction is
seen as a deviation of the ion–ion repulsion from the mean-
field result. The fact that the mobile ions can correlate leads
to configurations of lower energies than those allowed for two
opposing smeared-out double layers. In any case, however,
the maximum ion–ion repulsion (mean-field result) is equal
in absolute value to the attraction between ions in one half-
space and the wall in the other, i.e. σ 2/2ε0. In other words,
the maximum deviation cannot be bigger than the Maxwell
term, which in the low surface charge density case is −5.3 M.
Changing σ has therefore changed the upper bound for the
correlation attraction. One again sees that the electrostatic
component curves converge to these upper bounds at the
shortest separations. In the MS, the difference in the two net
curves at the position of the correlation minimum is again given
by the electrostatic component. At this low dipole moment
the electrostatics are still largely dominated by the charge–
charge interactions: thus the interpretation of the difference
in the two PEL is as in the PM. The difference in the ideal
entropic components has been erased, as usual when the space
the ions leave empty when halving their number is being filled
by dipoles. Until around 9 Å the small difference in the PLJ

pp
terms is a result of the LJiμ component, an effect which is
partly cancelled by the LJμμ term. At 7.5 Å, LJiμ = 12.8 M

for σ = −0.002 e Å
−2

and 6.8 M for σ = −0.001 e Å
−2

,
while LJμμ = 5.5 M and 9.6 M for high and low surface
charge density, respectively. At 9 Å LJiμ went from 34.7 M
to 18.0 M and LJμμ from 25.1 to 38.5 M when going from
high to low σ , respectively. The pressure at the walls’ results
are not shown but once more the difference in behaviour can
be linked in both models to the LJiW term. This is clearly
net attractive for σ = −0.002 e Å

−2
at the position of the

correlation minimum, and has close to zero net effect for low
σ , at the same separation.

Figure 5 illustrates how the loss of a certain feature in
going from PM to MS can also be understood in terms of
pressure components. Panel (a) shows that, in the primitive
model with monovalent counterions, increasing the surface
charge density leads to an increased repulsion between the
charged plates. In a non-correlated regime, the situation agrees
with the intuitive picture of two like-charge objects repelling
each other more the bigger their charge is. This results from
both the P ID and PLJ

pp counteracting the increased electrostatic
attraction at higher σ . The ideal entropic and ‘collisional’
effects then dominate over electrostatics. For the low density
molecular solvent (results not shown) the PM behaviour is still
discernible, but at higher density the relative position of the
two net curves, at around 7.5 Å, has been inverted (panel (b)
in figure 5). The difference between the two PLJ

pp components
being similar to that in the PM, we immediately conclude that

this is an exclusively entropic effect, connected to the fact that
now there is no difference in P ID between both surface charge
densities, as is common at high density. The difference in the
Lennard-Jones terms is still dominated by the LJii component,
either because the other two do not differ much (like at 7.5 Å)
or because their differences (nearly) cancel (like at 9 Å).

4. Conclusions

We have performed a thorough and systematic comparative
analysis of the different components of the pressure between
two infinite like-charged plates with only counterions and
solvent in between, both at the walls and at the midplane
between them. This shows that the ion–ion correlation
attraction operating in the primitive model for sufficiently
high electrostatic coupling (high q , σ and/or low εr ) is also
taking place in a dipolar solvent. In fact, the same pressure
components are responsible for the same effects in these two
models, namely:

• counterion valency effects are not predominantly a
direct electrostatic phenomenon, but are rather related
to the difference in the number of counterions in the
system, either through both their ideal entropy and direct
excluded-volume interactions (PM) or just the latter (MS);

• screening effects are clearly of electrostatic origin, even
if with a different physical mechanism in both models:
in the PM changes happen in the short separation
electrostatics through a direct screening of all charge–
charge interactions by εr ; in the MS the electrostatic
interactions at short range are largely unchanged when
increasing μ, and the reduction of the innermost minimum
in the net pressure curves comes about through a lowering
of the bulk value of the electrostatic component, due to
dipolar cohesivity. This renders its net attractive effect at
short separations smaller than the one at lower μ. We note
that this provides an explanation as to why the PM works
at short ranges, when there is almost no solvent in the slit,
through a difference in bulk pressure at different values of
the solvent dipole moment;

• surface charge density effects are also exclusively
electrostatic, but share the same physical origin in both
models. When correlation attraction is seen as a deviation
from the mean-field ion–ion repulsion, changing σ has
the effect of changing the upper bound for the maximum
deviation (the Maxwell term, equal to the attraction
between ions in one half-space and the wall in the other).

The above conclusions emerge mainly from the analysis
of the pressure components at the midplane. In the pressure
at the walls one basically has two components only to look
at, which inevitably limits their usefulness. The Lennard-
Jones interaction between ions and walls gives an interesting
perspective over the correlation phenomenon. In a non-
correlated situation the picture conforms to that of two double
layers being pushed against each other, the counterions going
more towards the walls as the distance between them is
decreased, whereas in a correlated situation the ions at short
range go slightly away from walls to minimize the energy of

10



J. Phys.: Condens. Matter 20 (2008) 494235 L Pegado et al

the system. However, the differentiation between these two
extremes cannot go beyond the fingerprint of having a net
attractive versus a net repulsive (or weakly attractive) LJiW

component, and establishing links between the interactions
in the system and the resulting pressure components is not
straightforward.

Pressure decomposition is also instrumental in distin-
guishing between solvent packing/depletion and the coexisting
correlation attraction. Compared to the PM, all net pressure
curves for the MS are shifted down at the position of the in-
nermost minimum. This is a fairly non-specific effect which
operates roughly in the same way for different counterion va-
lencies, dipole moment magnitudes and surface charge densi-
ties. It is not connected to changes in electrostatic coupling but
merely in density in going from PM to MS: in particular, to the
difference between the bulk pressure values and those at short
ranges, when one removes the second-last layer of solvent in
the slit. Solvent depletion is then mainly seen in the difference
between the infinite separation value of the pressure term corre-
sponding to the total excluded-volume repulsions (PLJ

pp ) and the
one at the position of the correlation minimum, in the case of
the pressure at the midplane. In the case of the pressure at the
walls solvent depletion manifest itself also very clearly through
a net attractive dipole–wall Lennard-Jones term. Immediately
before the minimum where solvent depletion and correlation
attraction coexist, the curves in the MS have a net repulsive
maximum. This is connected to the packing of two layers of
spheres in the slit, and is obvious, for example, in the PLJ

pp term.
It emerges from the discussion above that the interpre-

tation of pressure components is better done in terms of net
effects, defined as the difference between the bulk or infinite
separation value of one component and the absolute value at a
certain separation. This has a clear link with the experimental
definition of osmotic pressure, and has full physical meaning
in the case of the pressure at the midplane. The two best exam-
ples are perhaps the just-mentioned solvent depletion effects,
which rely on the difference between a relatively high positive
bulk value for PLJ

pp and a comparatively small value at short
range, rendering the net effect attractive, and the loss in the
correlation attraction upon increased μ, at constant q and σ , as
explained above.

The components of the pressure at the midplane also
provide insight into more subtle effects directly derived from
the different interactions in the system. Examples are the
change in the sign of the ion–dipole electrostatic forces, at
short separations and sufficiently high μ, going from repulsive
to attractive, and the increase in the PLJ

pp term due to stronger
ion–dipole interactions. This last effect is, of course, connected
to the bigger average proximity between the different species.
Moreover, the pressure at the midplane makes it obvious that
the effects of ideal entropy will disappear at high solvent
density, where space left empty by ions is filled up by dipoles.
A good example is the inversion of the behaviour of the
systems for monovalent counterions and low screening upon
changing σ , when one compares PM and MS. In the PM,
the fact that two non-correlated double layers repel each other
more the higher σ is depends highly on P ID, hence the effect
is lost at sufficiently high solvent number density.

Acknowledgment

This work was supported by the Fundação para a Ciência e a
Tecnologia, Portugal (LP, SFRH/BD/21462/2005).

References

[1] Guldbrand L, Jönsson B, Wennerström H and Linse P 1984
Electrical double layer forces. A Monte Carlo study J. Chem.
Phys. 80 2221
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